

7-9 BANKSIA ROAD, GREENACRE

PROPOSED CHILDCARE CENTRE DEVELOPMENT

TRAFFIC & PARKING IMPACT ASSESSMENT

NOVEMBER 2024

HEMANOTE CONSULTANTS PTY LTD

TRAFFIC ENGINEERING & DESIGN CONSULTANTS
PO BOX 743, MOOREBANK NSW 1875
CONTACT: 0414 251 845

EMAIL: projects @hemanote.com.au

TRAFFIC & PARKING IMPACT ASSESSMENT
7-9 BANKSIA ROAD, GREENACRE
PROPOSED CHILDCARE CENTRE
DATE: 04 NOVEMBER 2024

DISCLAIMER

All information and material contained in this report is the property of Hemanote Consultants. It is solely based on the instructions of our client and the findings of Hemanote Consultants and is not intended for use or should not be relied upon by any third party. No responsibility is undertaken by Hemanote Consultants to any third party.

Any use, copying, reproduction or retransmission of the information and material in this report, in whole or in part, is not permitted without the written consent of Hemanote Consultants.

Document Management

Traffic & Parking Assessment – 7-9 Banksia Road, Greenacre

Doc. Revision	Prepared by	Reviewed by	Issued by	Issue date
Draft 1 (internally)	S. Payet	R. Selim	S. Payet	02 Oct 2024
Draft 2 (internally)	S. Payet	R. Selim	S. Payet	17 Oct 2024
Final report (to client)	S. Payet	R. Selim	R. Selim	18 Oct 2024
Final report (to client)	S. Payet	R. Selim	R. Selim	04 Nov 2024

Table of Contents

1	INT	RODUCTION	4
2	EXI	STING SITE DESCRIPTION	5
3	EXI	STING TRAFFIC CONDITIONS	7
	3.1	Road Network and Classification	7
	3.2	Road Description and Traffic Control	7
	3.3	Current Traffic Flows	9
	3.4	Existing Transportation Services	13
4	PRO	OPOSED DEVELOPMENT	14
	4.1	Description of the proposal	14
	4.2	Vehicular & Pedestrian Access	15
	4.3	On-site Parking Provision	16
	4.4	On-site Parking Layout and Circulation	17
	4.5	Waste Collection & Deliveries	18
5	ON-	-STREET PARKING PROVISION	19
	5.1	Existing Parking Controls	19
	5.2	Impacts of Proposed Development on Parking	19
6	EXT	FERNAL TRAFFIC IMPACT	20
	6.1	Estimated Future Traffic Generation	20
	6.2	Projected Intersection Performance (post-development)	20
7	CO	NCLUSION	28
	Appen	dix 'A' – Proposed Development Plans	29
	Appen	dix 'B' – Vehicle Swept Paths	33
	Annen	div 'C' - SIDRA Intersection Analysis	55

1 INTRODUCTION

This report has been prepared by Hemanote Consultants to assess the traffic and parking implications of the proposed childcare centre to be located at **7-9 Banksia Road, Greenacre**, accommodating up to 100 children places between the ages of 0 to 5 years old.

This report is to be read in conjunction with the architectural plans prepared by Lockhart-Krause Architects (reduced copy of the plans – Revision 'A' and dated 28/10/2024 - is attached in *Appendix 'A'* of this report) and submitted to City of Canterbury-Bankstown Council as part of a Development Application.

This report is set as follows:

- Section 2: Description of the existing site location and its use;
- Section 3: Description of existing traffic conditions near the subject site;
- Section 4: Description of the proposal, vehicular access, on-site parking provision, layout and circulation;
- Section 5: Assessment of impacts on parking;
- Section 6: Assessment of impacts on traffic in the vicinity of the subject site; and
- Section 7: Outlines conclusions.

2 EXISTING SITE DESCRIPTION

> Site Location

The subject site is located on the northern side of Banksia Road at properties No. 7-9 (legally known as Lot A of DP365724 and Lot A of DP419336), within the suburb of Greenacre. The site has a frontage of approximately 29.6 metres to Banksia Road from the south. Refer to Figure 1 for a site locality map.

Figure 1: Site Locality Map

> Existing Site & Surrounding Land Use

The subject site has an area of 1,363.4m² and is currently occupied by two residential dwellings. It is located in a mixed residential and commercial area, characterised by residential developments, as well as nearby retail and commercial sites.

The site is also located approximately 2.1 km from Punchbowl Railway Station, 2.3 km from Wiley Park Railway Station and 2.8 km from Lakemba Railway Station.

Photo 1: Site frontage to Banksia Road

3 EXISTING TRAFFIC CONDITIONS

3.1 Road Network and Classification

Banksia Road is a local road that runs in an east to west direction between Waterloo Road (regional road) to the east and Stacey Street (state road) to the west. Banksia Road intersects with a number of local roads near the subject site, including Community Place, Bromley Avenue and Noble Avenue.

3.2 Road Description and Traffic Control

Banksia Road has a two-way divided carriageway, with a width between kerbs of approximately 12 metres. This carriageway generally provides one travel lane per direction, with parking available along both sides of the road. At present, unrestricted parking is generally permitted along both sides Banksia Road, including the frontage of the subject site. Parking closer to the intersection with Waterloo Road is restricted to signposted '1-Hour Parking 8:30am – 6:00pm Mon – Fri and 8:30am – 12:30pm Sat', as well as 'No Stopping' and 'No Parking' on the northern side, near the intersection with Community Place.

The legal speed limit on Banksia Road is at 50km/h, with signposted '40km/h High Pedestrian Activity' near the intersection with Waterloo Road. Banksia Road intersects with Community Place and Bromley Avenue, which are both controlled by 'T-priority' traffic measures, given to traffic travelling along Banksia Road.

Figure 2: Aerial photograph of the subject site and surrounding road network

Photo 2: Banksia Road at the subject site - facing east

Photo 3: Banksia Road at the subject site – facing west

3.3 Current Traffic Flows

A traffic volume survey was undertaken by Hemanote Consultants at the following intersections of:

- Banksia Road / Waterloo Road
- Banksia Road / Noble Avenue

in the vicinity of the subject site on Thursday 19 September 2024, during morning period (7.00am to 10.00am) and afternoon period (3.00pm to 6.00pm), considering the childcare centre proposed hours of operation and traffic peak periods.

The traffic flows in the morning & afternoon peak hours are shown in Tables 1 and 2 below.

Traffic movement	Morning Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)			
	8.00am – 9.00am	3.15pm – 4.15pm			
	Waterloo Road (North of Ba	anksia Road)			
Northbound	368	396			
Southbound	232	293			
	Waterloo Road (South of B	anksia Road)			
Northbound	294	326			
Southbound	226	283			
	Banksia Road				
Eastbound	95	128			
Westbound	27	68			

Table 1: Current traffic flows in the vicinity of the subject site (on a typical weekday)

Traffic movement	Morning Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)			
	8.00am – 9.00am	3.15pm – 4.15pm			
	Noble Avenue (North of Ba	anksia Road)			
Northbound	309	495			
Southbound	392	589			
	Noble Avenue (South of Ba	anksia Road)			
Northbound	296	527			
Southbound	349	509			
	Banksia Road (East of No	ble Avenue)			
Eastbound	84	136			
Westbound	35	61			
	Banksia Road (West of Noble Avenue)				
Eastbound	51	50			
Westbound	32	87			

Table 2: Current traffic flows in the vicinity of the subject site (on a typical weekday)

The results of the traffic volume counts undertaken determined that the traffic morning peak period on Banksia Road / Waterloo Road and Banksia Road / Noble Avenue were between 8.00am to 9.00am and the afternoon peak period was between 3.15pm to 4.15pm on a typical weekday.

The existing traffic flows on Banksia Road, Noble Avenue and Waterloo Road are appropriate for two local roads and a regional road, respectively, in a mixed residential and commercial area, where traffic is free flowing without major queuing or delays near the subject site in peak hours, with spare capacity.

It is determined that the existing mid-block level of service on Banksia Road is at level 'A' in accordance with Table 4.4 of the Roads & Maritime Services' "Guide to Traffic Generating Developments - 2002" (on the following page).

The existing mid-block level of service on Waterloo Road and Noble Avenue ranges between levels 'A' and 'B'.

Level of Service	One Lane (veh/hr)	Two Lanes (veh/hr)
A	200	900
В	380	1400
С	600	1800
D	900	2200
E	1400	2800

Table 4.4: Urban road peak hour flows per direction RMS Guide)

> Current Intersection Performance (pre-development)

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provide a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "Guide to Traffic Generating Developments - 2002" (shown below).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

Table 4.2: Level of Service Criteria for intersections (RMS Guide)

A **pre-development** SIDRA intersection performance analysis was undertaken for the existing intersections of Banksia Road / Waterloo Road and Banksia Road / Noble Avenue, in the vicinity of the subject site (Pre-development).

Refer to Figure 3 on the following page, showing the intersections network layout controlled by T-priority traffic measures at Banksia Road / Waterloo Road and a roundabout at Banksia Road / Noble Avenue. Banksia Road, Noble Avenue and Waterloo Road have undivided carriageways, with one through traffic lane in each direction.

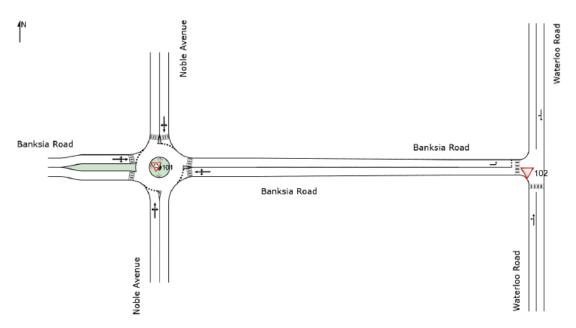


Figure 3: Existing Intersection Network Layout

The **pre-development** SIDRA performance analysis determined that the current operational performance of the existing intersections of Banksia Road / Waterloo Road and Banksia Road / Noble Avenue are in good operation at a Level of Service (LOS) 'A' during AM and PM peak periods.

Refer to the summary of the results of the SIDRA intersection performance analysis attached in *Appendix 'C'* of this report.

3.4 Existing Transportation Services

The subject site has good access to public transport services in the form of trains and buses. The site is located approximately 2.1 km from Punchbowl Railway Station, 2.3 km from Wiley Park Railway Station and 2.8 km from Lakemba Railway Station.

Frequent bus services operate along Waterloo Road, Noble Avenue, Boronia Road, Juno Parade, Wangee Road, Greenacre Road, Hillcrest Avenue, Chiswick Road, Rawson Road, Highview Avenue, Wattle Street, Acacia Avenue, Maiden Street, Shellcote Road, Carrisbrook Avenue and Cardigan Road, in close proximity to the subject site (i.e. bus routes M90, S14, 913, 914, 939, 940, 941 and 946).

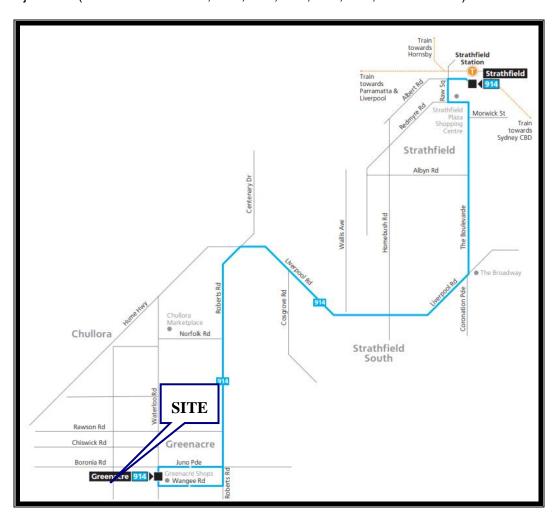
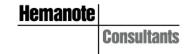


Figure 4: Bus services near the subject site (Bus no. 914)

4 PROPOSED DEVELOPMENT


4.1 Description of the proposal

The proposed development application seeks approval for the demolition of the existing residential dwellings located at **7-9 Banksia Road, Greenacre**, and the construction of a childcare centre, accommodating up to 100 children places, with basement parking.

The proposed development will include the following:

- Childcare centre accommodating up to one-hundred (100) children:
 - 20 children places between the ages of 0 to 2 years old (5 staff members);
 - 50 children places between the ages of 2 to 3 years old (10 staff members);
 - 30 children places between the ages of 3 to 6 years old (3 staff members).
- A total of twenty-five (25) on-site car parking, with 10 car spaces allocated for staff parking and 15 visitor car parking spaces for the drop-off and pick-up of children (including 1 accessible parking space & an adjacent shared area), in addition to five (5) bicycle storage spaces, in basement level.
- There will be a maximum of eighteen (18) full-time educators/staff members onsite at any given time. The proposed hours of operation of the centre will be from 7.00am to 6.00pm on weekdays only.

Refer to *Appendix 'A'* for the proposed development plans.

4.2 Vehicular & Pedestrian Access

The vehicular access to and from the off-street parking facilities will be via a new access driveway crossing to be located in Banksia Road. The access driveway is to have a width of 7 metres, which is adequate for a low volume (Category 1) access driveway in accordance with AS2890.1:2004 – Table 3.2.

The access driveway is to provide two-way vehicular movements, where two vehicles can pass each other at the same time without causing delays or congestion to traffic on the street. The proposed access driveway is located more than 6 metres from the tangent point of the adjacent kerbline, in accordance with Figure 3.1 of AS2890.1:2004.

Vehicular access is to be located and constructed in accordance with the requirements of AS2890.1:2004, where vehicles enter and exit the site in a forward direction at all times.

The existing vehicular crossings located in Banksia Road are to be removed and replaced with new kerb, gutter and footpath, to be constructed to Council specifications.

The clear sight line triangle (2.5m x 2m) between the driver's eye view and pedestrians is provided on the exit side of the driveway, as per Figure 3.3 of AS2890.1:2004.

A separate pedestrian access gate is also provided at the front of the site to segregate pedestrians and vehicles and improve safety within the site.

4.3 On-site Parking Provision

Canterbury-Bankstown Development Control Plan 2023, Chapter 3, Section 2, requires on-site parking for childcare centres to be provided at a minimum rate of:

- 1 car space per 4 children.
- 1 bicycle space per 4 staff.

Refer to Table 3 below for the required and proposed parking provision for the subject development site:

Age Group	0-2 years	2-3 years	3-5 years	Total
Number of children	20	50	30	100
Staff to Children Ratio	1 to 4	1 to 5	1 to 10	-
Number of Staff	5	10	3	18
On-site car parking required (25 car spaces)				
On-site car parking proposed (10 spaces for staff & 15 spaces for parents/visitors)				
Compliance with on-site car parking				

Table 3: On-site parking requirement and provision

The proposed childcare centre for 100 children places and 18 staff members, would therefore require a minimum of 25 on-site car parking spaces and 5 bicycle storage spaces.

The proposed development provides twenty-five (25) on-site car parking, with 10 car spaces allocated for staff parking and 15 visitor car parking spaces for the drop-off and pick-up of children (including 1 accessible parking space & an adjacent shared area), in addition to five (5) bicycle storage spaces, in basement level.

Therefore, the proposed on-site parking provision is adequate for the proposed development and in compliance with Council's parking requirements.

4.4 On-site Parking Layout and Circulation

The layout of the on-site car parking area and manoeuvring arrangements has been designed to enhance vehicular and pedestrian access, where vehicles enter and exit the site in a forward direction, through the provision of adequate internal aisle width and turning space.

AS2890.1:2004 Parking facilities Part 1: Off-street car parking requires a minimum parking space width of 2.4 meters (for User Class 1A staff parking) and 2.6 metres (for User Class 3 short-term visitor parking) and a minimum length of 5.4 meters. The proposed off-street car spaces have a minimum width of 2.4 metres for staff and a minimum width of 2.6 metres for visitors and a length of 5.4 meters each, which is adequate.

The accessible car parking space has a width of 2.4 metres, in addition to an adjacent 2.4 metres wide shared area, which is adequate in accordance with AS2890.6:2009 (and the updated AS2890.6:2022).

Car parking spaces adjacent to walls or obstructions have been made wider than the minimum width, to accommodate full door opening in accordance with Clause 2.4.2(d) of AS2890.1:2004.

Clause 2.4.2 of AS2890.1:2004 requires a minimum aisle width of 5.8 metres for two-way aisles, adjacent to 90° angle parking. The proposed aisles have a minimum width of 6.3 metres, which is adequate for two-way traffic and manoeuvring into and out of parking spaces.

Adequate space is provided throughout the basement level, which allows vehicles to undertake a 3-point turn and exit in a forward direction, if all other car parking spaces are occupied, as demonstrated in the vehicle swept paths diagrams attached in *Appendix 'B'* of this report.

The ramp to the basement level has a minimum clear width of 5.5 metres, in addition to a 300mm kerb on either side and has a maximum grade of 1:20 (5%) for the first 6 metres within the site. It has a maximum grade of 1:4 (25%) with a change of grade of 1:8 (12.5%) over the 2 metres at either end of the ramp, which is adequate.

A minimum 2.2 metres headroom clearance is to be provided from the car park basement level to the underside of all services conduits and suspended stormwater pipelines, in accordance with Clause 5.3.1 of AS2890.1:2004. A "Maximum Headroom Clearance 2.2m" sign is to be erected at the entrance to the basement level and is to be clearly visible to all drivers.

A minimum 2.5 meters headroom clearance is to be provided above the accessible parking space and its adjacent shared zone in accordance with Clause 2.4 of AS2890.6:2009 (and the updated AS2890.6:2022).

A traffic convex mirror is to be installed at the bottom of the ramp (as shown on the basement plan), to provide drivers with further assistance with viewing oncoming traffic, as an additional safety and traffic management measure.

A dedicated pedestrian path has also been provided within the carpark, to provide a defined pedestrian path to the centre's access point. It is recommended that the onsite parking area be signposted with a speed limit of 10 km/h, to reduce speed environment, raise awareness of the presence of pedestrians and children and increase safety for all users of the carpark.

All vehicular manoeuvring within the site has been designed and checked using the B99 and B85 standard design vehicle turning paths from AS2890.1:2004 and Austroads. Refer to the vehicle swept paths diagrams attached in *Appendix 'B'* of this report.

Therefore, the car parking layout and vehicular circulation are adequate in accordance with AS2890.1:2004 and AS2890.6:2009 (and the updated AS2890.6:2022), where vehicles are to enter and exit the site in a forward direction at all times.

4.5 Waste Collection & Deliveries

All waste storage is to take place within the dedicated garbage storage area located in basement level. Waste Bins will be transported to the street kerbside in Banksia Road for collection on waste collection day.

5 ON-STREET PARKING PROVISION

5.1 Existing Parking Controls

The subject site is located in a mixed residential and commercial area, where unrestricted parking is generally permitted along both sides Banksia Road, including the frontage of the subject site. Parking closer to the intersection with Waterloo Road is restricted to signposted '1-Hour Parking 8:30am – 6:00pm Mon – Fri and 8:30am – 12:30pm Sat', as well as 'No Stopping' and 'No Parking' on the northern side, near the intersection with Community Place.

5.2 Impacts of Proposed Development on Parking

The parking demand resulting from the proposed childcare centre development can be accommodated within the proposed adequate and compliant on-site car and bicycle parking spaces for staff and visitors, in addition to on-street parking. The subject site has good access to existing public transport in the form of train and bus services.

Therefore, the proposed development will not have adverse impacts on parking in the surrounding area.

6 EXTERNAL TRAFFIC IMPACT

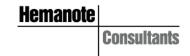
6.1 Estimated Future Traffic Generation

An indication of the potential traffic generation of the proposed development is provided by the *RMS Guide to Traffic Generating Development - 2002*.

The Guide specifies the following traffic generation rates for long-day care centres:

- 0.8 peak period vehicle trips per child between 7.00am and 9.00am; and
- 0.7 peak period vehicle trips per child between 4.00pm and 6.00pm.

Therefore, the proposed development with a total of <u>100 children places</u> has a total estimated traffic generation as follows:


- 80 morning peak period vehicle trips (40 in and 40 out trips); and
- 70 afternoon peak period vehicle trips (35 in and 35 out trips).

6.2 Projected Intersection Performance (post-development)

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provides a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "Guide to Traffic Generating Developments - 2002" (shown below).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
Е	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

Table 4.2: Level of Service Criteria for intersections (RMS Guide)

A **post-development** SIDRA intersection performance modelling analysis was undertaken for the intersections of Banksia Road / Waterloo Road and Banksia Road / Noble Avenue, in the vicinity of the subject site, and it was modelled as the proposed network layout as shown in Figure 5 below.

Refer to the summary of the results of the SIDRA intersection performance analysis (undertaken for pre & post development, including the 10-year future growth) attached in *Appendix 'C'* of this report.

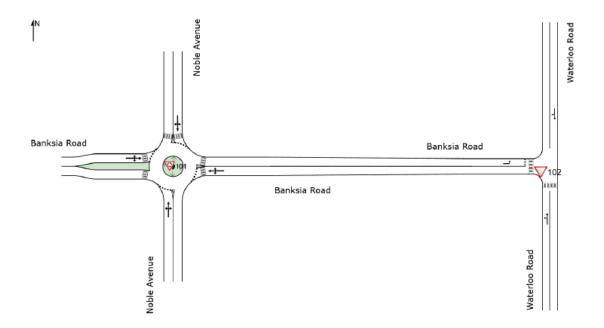


Figure 5: Intersection Network Layout

The following <u>assumptions</u> have been considered and adopted in the SIDRA Network Intersection modelling for the post-development conditions considering that the main access to and from the subject site is through Banksia Road:

- Morning and afternoon peak traffic generation from RMS Guide to Traffic Generating Developments has been used, as outlined in Section 6.1 of this report.
- AM & PM Traffic generated by the development was equally adopted for inbound and outbound traffic.

- The traffic volume split from the development at the subject-modelled intersections was assigned based on the current traffic conditions, existing traffic network restrictions, and observed drivers' behaviour.
- The traffic volume split from the development at the proposed driveway for the subject development was assigned as shown in Figures 6 and 7, based on the existing traffic volume pattern approaching and departing Banksia Road and existing 'No Right Turn' restrictions at the intersection of Banksia Road / Waterloo Road and to avoid this busier intersection.
- Pre-development network analysis is modelled for the base year (2024) and 10 years of future growth (2034) in surrounding traffic. The annual traffic growth rate for the 10-year future period was based on the SIDRA intersection analysis software, which allows for future analysis of surrounding traffic by applying a uniform growth rate of 2% for each year over the 10-year period.
- Post-development network analysis is modelled for when the Childcare Centre development is in operation and after 10 years of future growth in surrounding traffic.

These assumptions will result in the development trip distribution shown in Figures 6 and 7 for relevant traffic movement and modelled intersection.

TRIP DISTRIBUTION FROM PROPOSED DEVELOPMENT AM PEAK

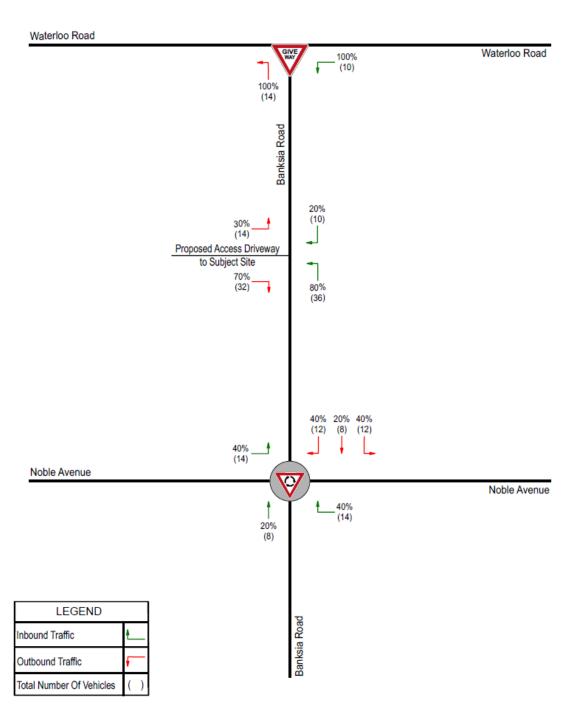


Figure 6: Development Traffic Distribution on the Surrounding Road Network - AM Peak

TRIP DISTRIBUTION FROM PROPOSED DEVELOPMENT PM PEAK

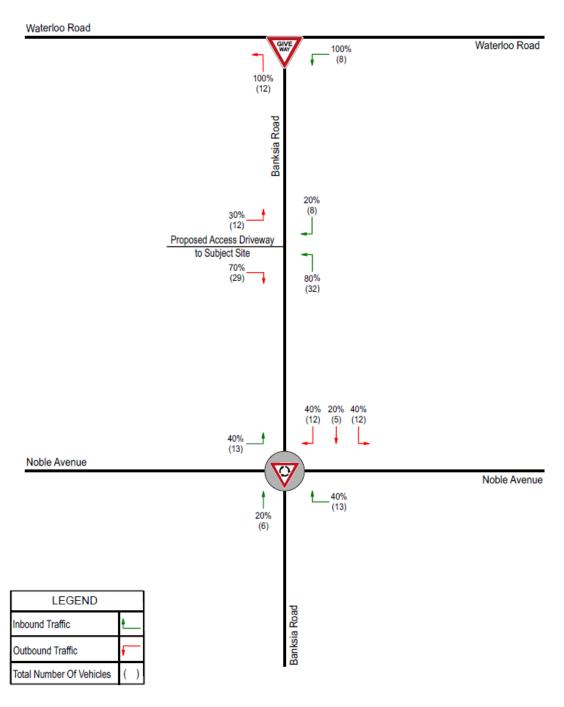


Figure 7: Development Traffic Distribution on the Surrounding Road Network - PM Peak

The outcome of the SIDRA modelling

A summary of the results of the SIDRA intersection performance analysis has been provided in Tables 4 to 7 below, as well as the SIDRA Movement Summary Tables attached in *Appendix 'C'* of this report.

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	Α	1.2	0.162
Base Year 2024 – Post Development	А	1.4	0.168
Future Year 2034 – Pre-Development	А	1.3	0.195
Future Year 2034 – Post Development	А	1.4	0.202

<u>Table 4: Network SIDRA Modelling – Banksia Rd / Waterloo Rd – 8.00am – 9.00am</u>

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	1.5	0.181
Base Year 2024 – Post Development	А	1.7	0.186
Future Year 2034 – Pre-Development	А	1.6	0.217
Future Year 2034 – Post Development	А	1.7	0.223

Table 5: Network SIDRA Modelling - Banksia Rd / Waterloo Rd - 3.15pm - 4.15pm

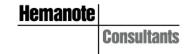
Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	Α	4.3	0.307
Base Year 2024 – Post Development	Α	4.7	0.336
Future Year 2034 – Pre-Development	А	4.4	0.372
Future Year 2034 – Post Development	А	4.8	0.409

Table 6: Network SIDRA Modelling – Banksia Rd / Noble Ave – 8.00am – 9.00am

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	4.8	0.489
Base Year 2024 – Post Development	А	5.1	0.518
Future Year 2034 – Pre-Development	А	5.1	0.598
Future Year 2034 – Post Development	А	5.6	0.636

Table 7: Network SIDRA Modelling – Banksia Rd / Noble Ave – 3.15pm – 4.15pm

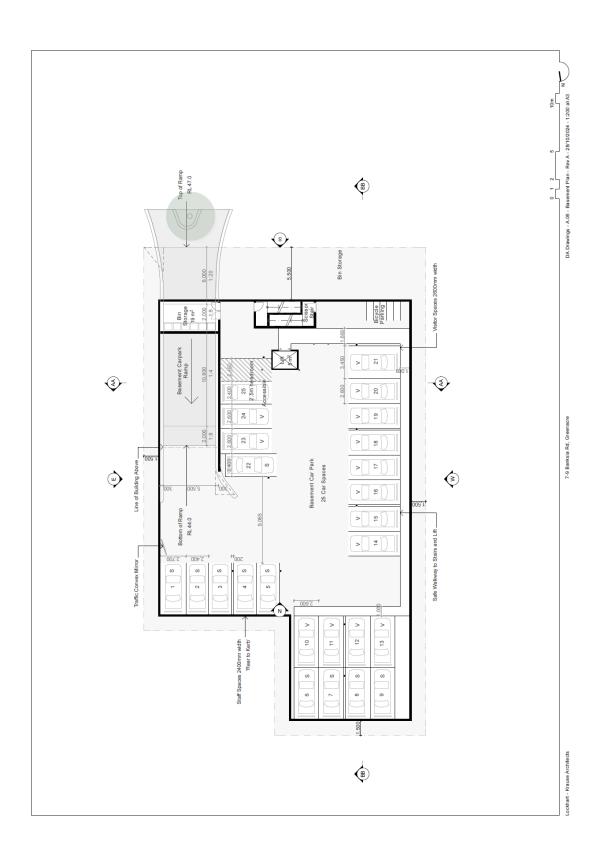
It can be concluded from the results of the SIDRA modelling that:


For the base year (2024), the proposed childcare centre (**post-development**) will not alter the current LOS (pre-development) at the subject intersections as outlined earlier in Section 3.3 of this report and will continue to operate at its current levels of service during weekday AM and PM peak periods.

The future 10-year (without development) analysis indicates the subject intersections of Banksia Road / Waterloo Road and Banksia Road / Noble Avenue will continue to operate at the current levels of service, during weekday AM & PM peak periods.

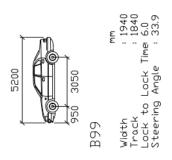
For the future year (2034), the proposed childcare centre (**with development**) will not alter the future LOS at the subject intersections and will continue to operate at the predicted future levels of service.

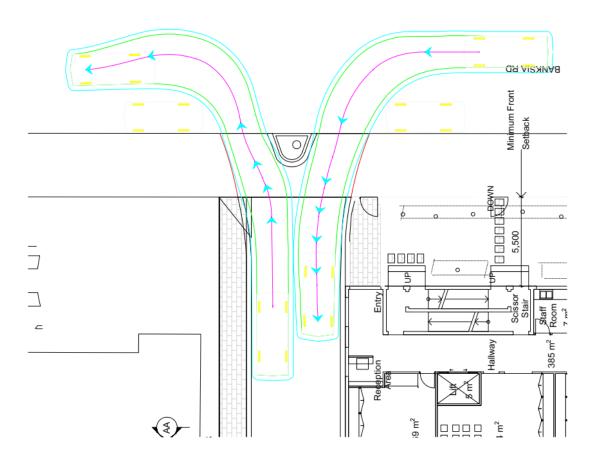
Therefore, the estimated traffic generation from the proposed development is of low impact on existing flows on Banksia Road and surrounding streets and will not have adverse impacts on the current operational performance of the subject existing intersections, which will continue to operate at the same levels of service.

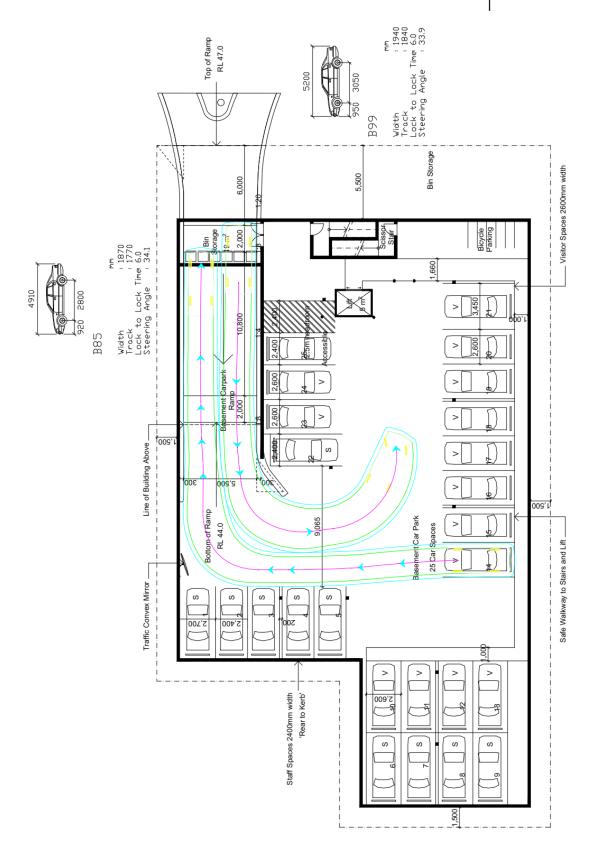

7 CONCLUSION

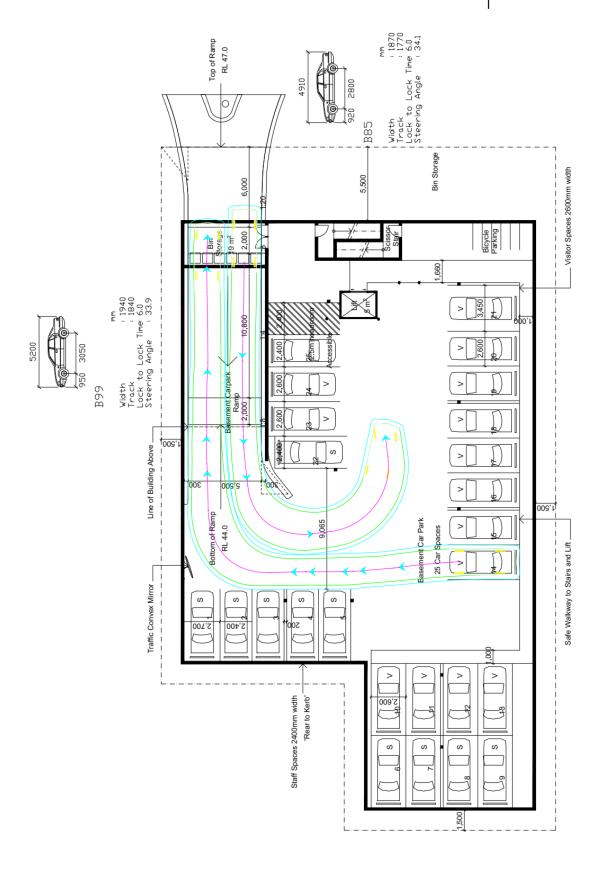
It can be concluded from the traffic and parking impact assessment that the proposed childcare centre development at **7-9 Banksia Road, Greenacre** will not have adverse impacts on existing traffic or parking conditions and is worthy of Council's support in its current form.

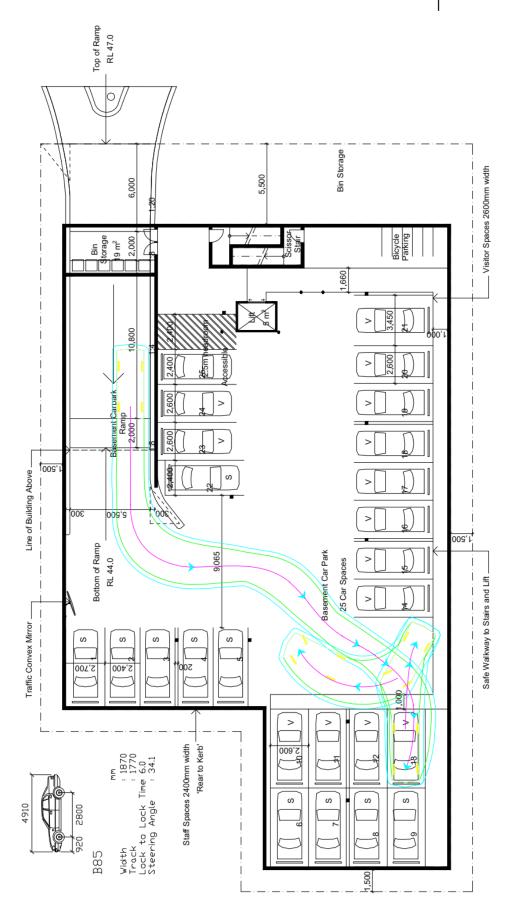
- The current traffic flows on Banksia Road, Noble Avenue and Waterloo Road are appropriate for two local roads and a regional road, respectively, in a mixed residential and commercial area, where there are no major queuing or delays in traffic near the subject site in peak hours, with spare capacity.
- The estimated traffic generation from the proposed development is of low impact on existing flows on Banksia Road and surrounding streets and will not have adverse impacts on the current operational performance of the subject existing intersections, which will continue to operate at the same levels of service. The traffic generated by the proposed childcare centre development can be readily accommodated within the existing road network.
- The potential increase in the number of vehicle movements in and about Banksia Road and adjacent streets will not have adverse impacts on the amenity of the area.
- The parking demand resulting from the proposed childcare centre can be easily accommodated within the proposed adequate and compliant on-site car and bicycle parking for both staff and visitors/parents, which is in compliance Council's parking requirements.
- The on-site vehicular access, car parking layout and vehicular circulation is adequate for the proposed development and in accordance with AS2890.1:2004 and AS2890.6:2009 (and the updated AS2890.6:2022), where vehicles are to enter and exit the site in a forward direction at all times.
- The subject site has good access to existing public transport services.
- The proposed development will not have adverse impact on parking in the surrounding area.

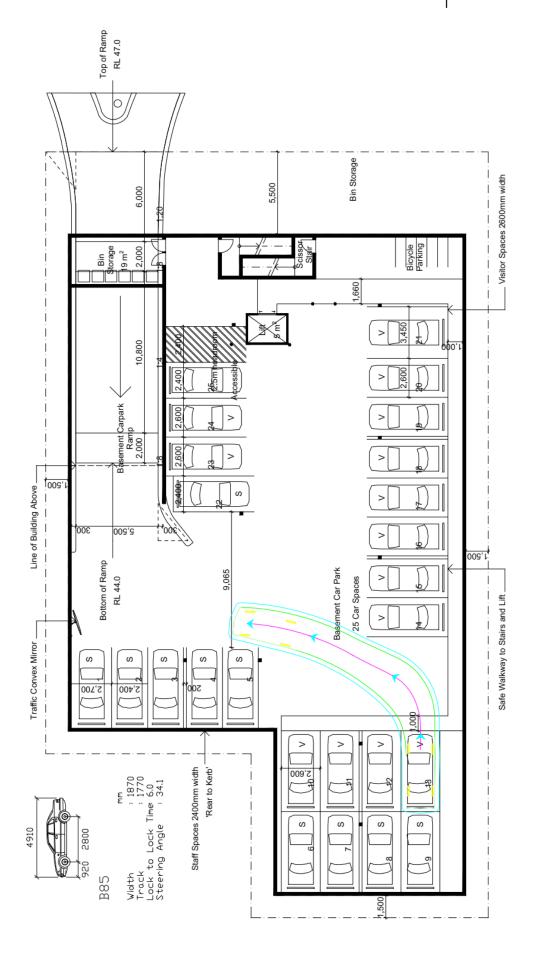

Appendix 'A' – Proposed Development Plans

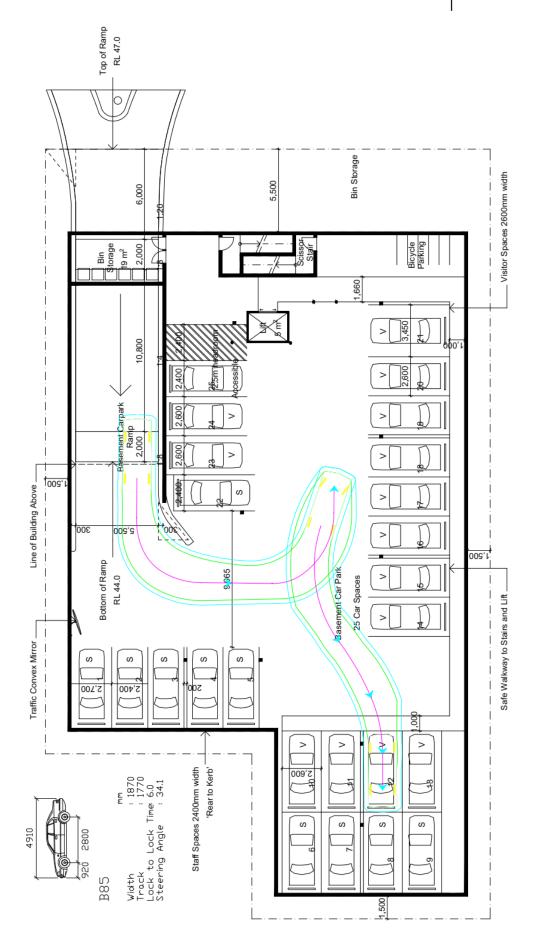


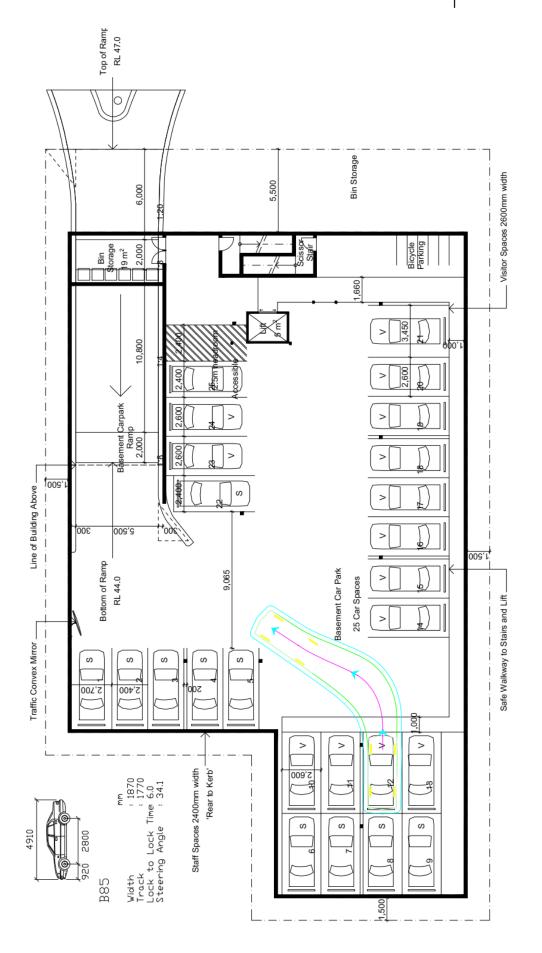

Appendix 'B' - Vehicle Swept Paths

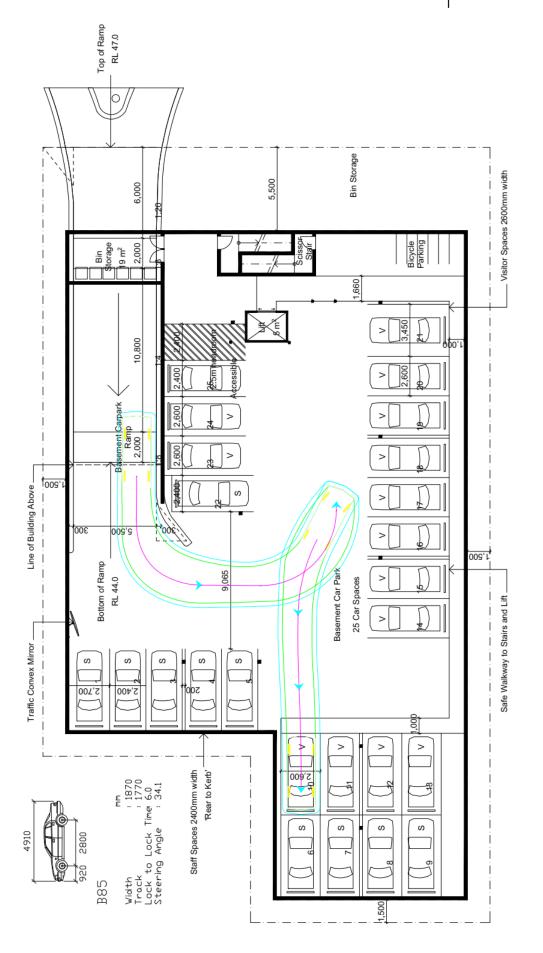


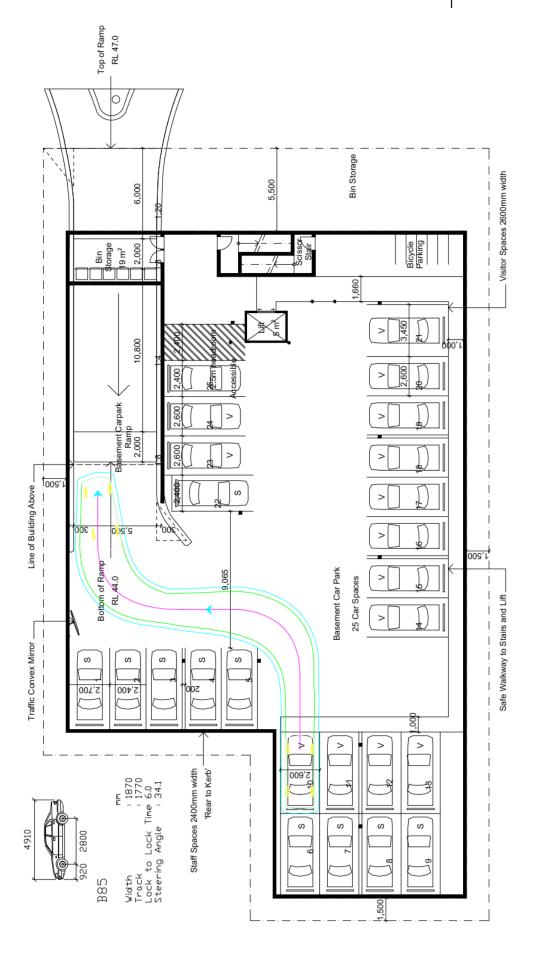

Hemanote Consultants

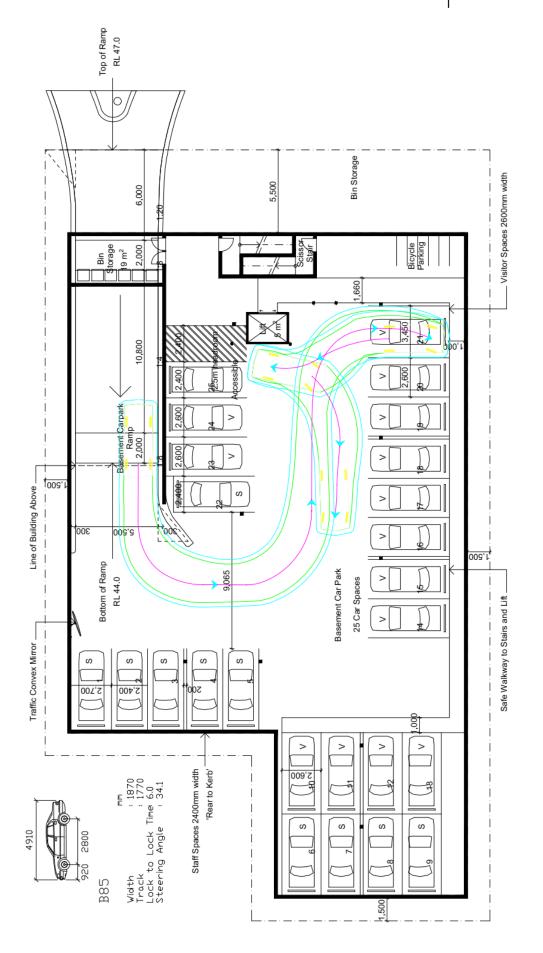

Hemanote Consultants

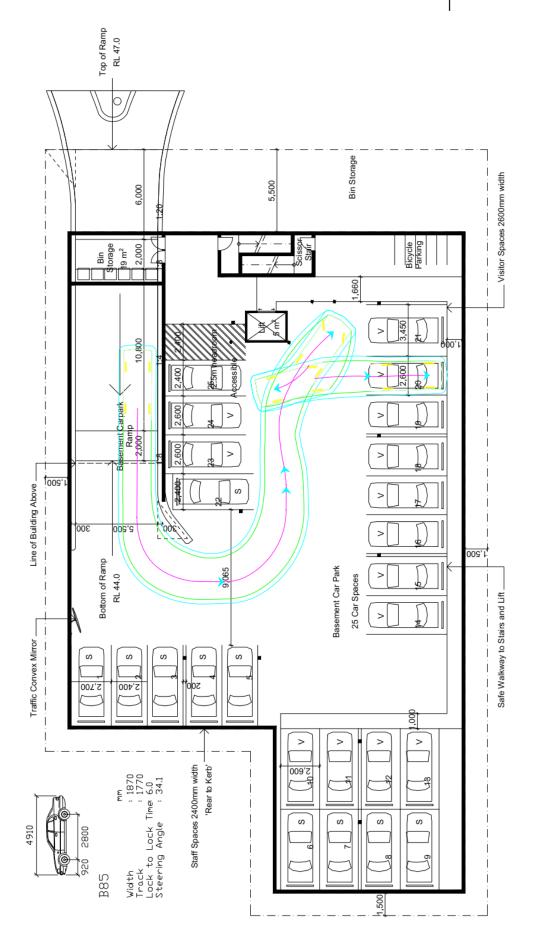


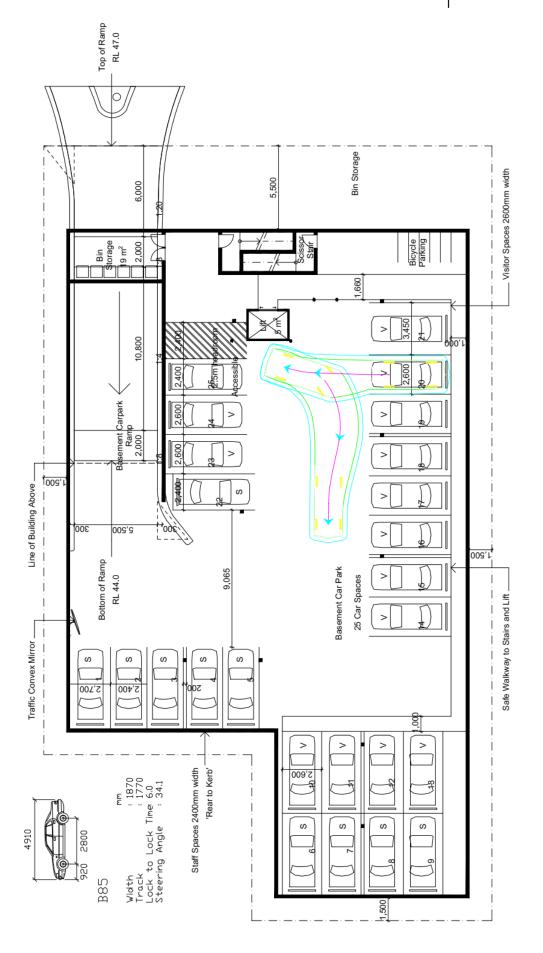

Hemanote Consultants

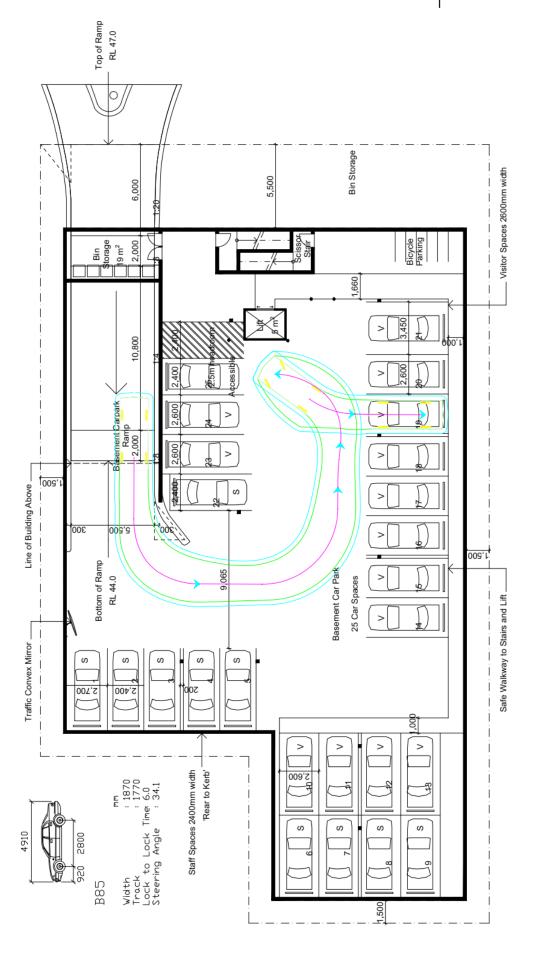


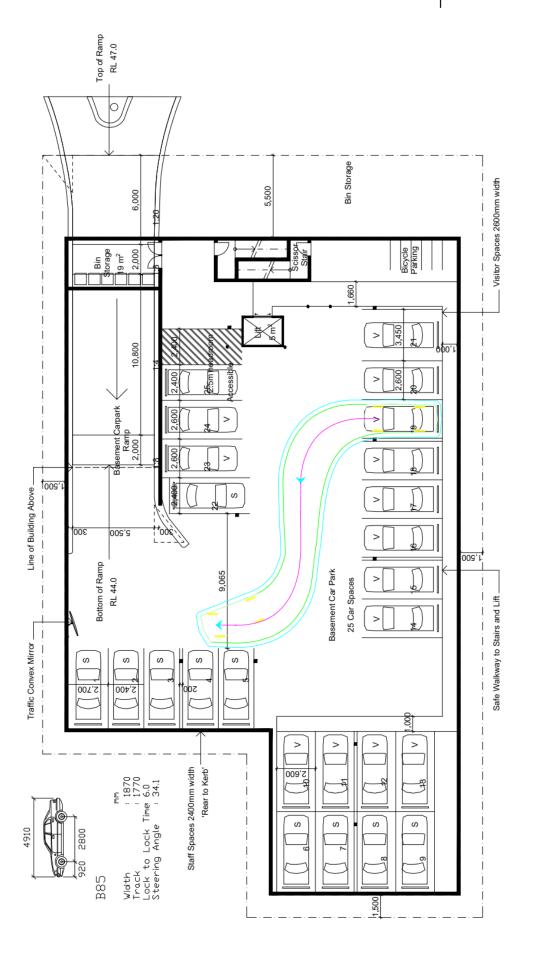


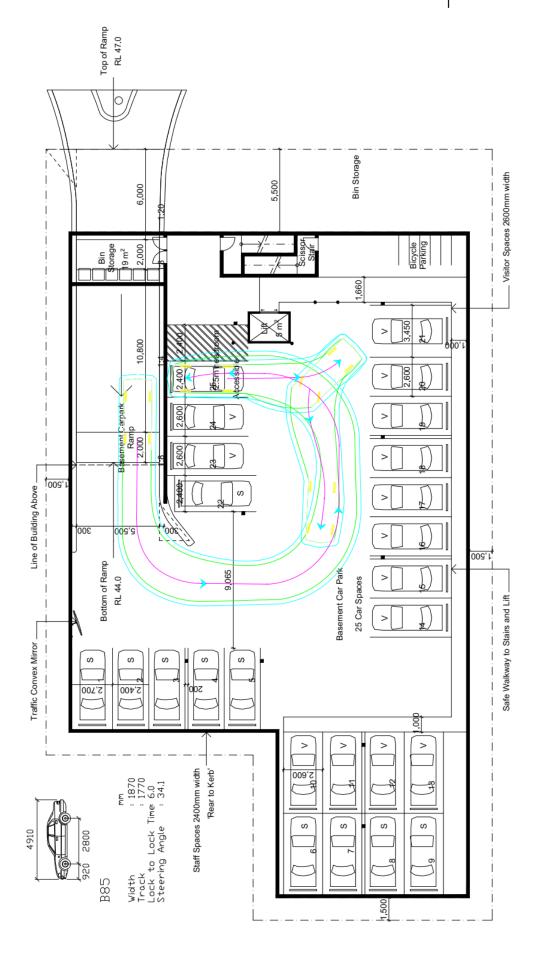


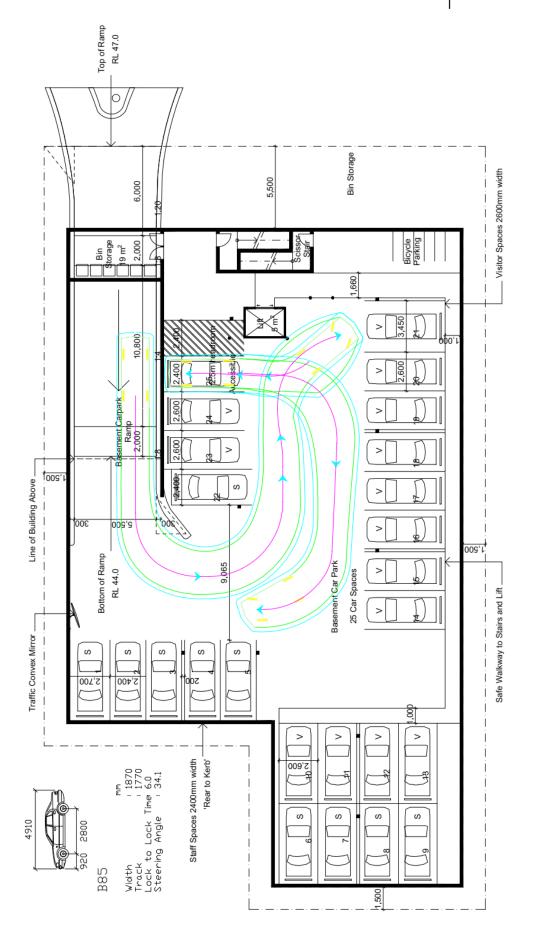


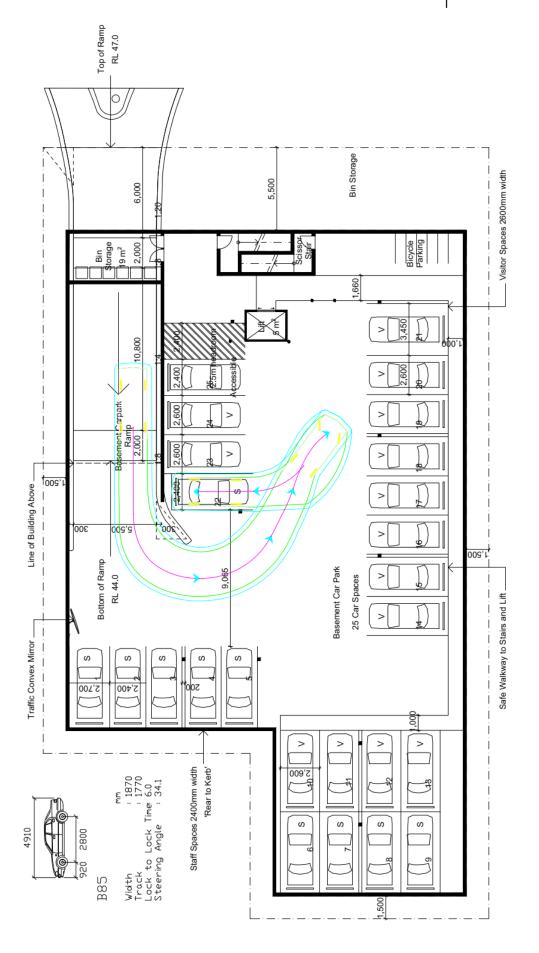


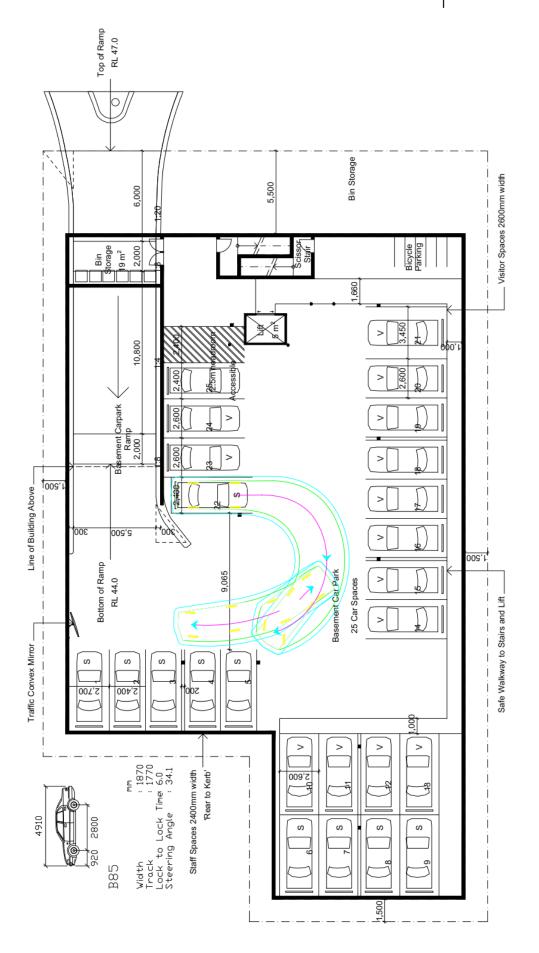


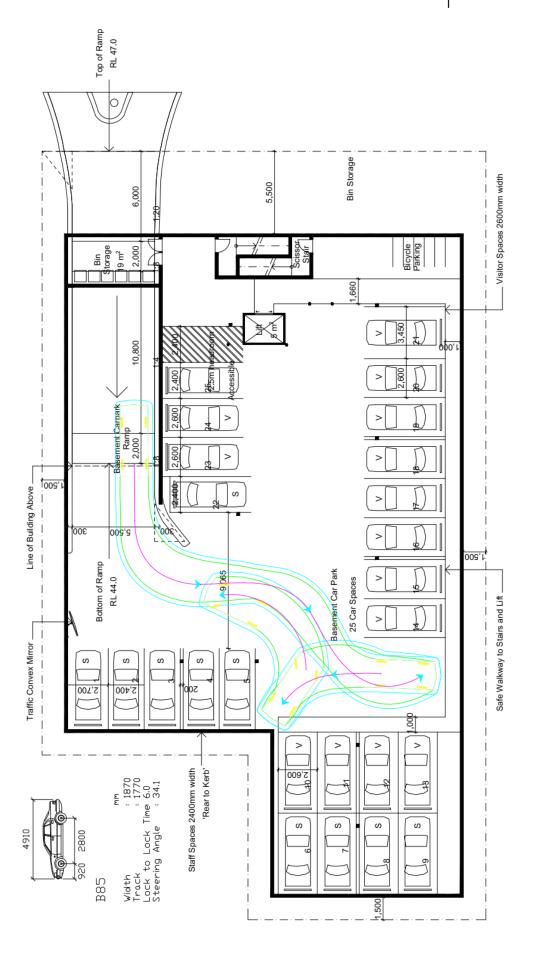


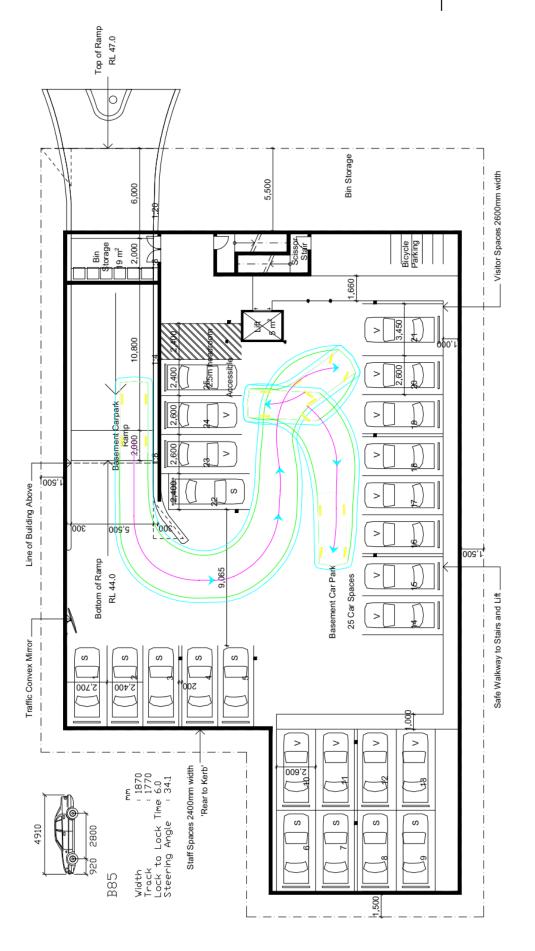












Appendix 'C' - SIDRA Intersection Analysis

MOVEMENT SUMMARY - 8.00am - 9.00am - Base Year 2024 - Banksia Road / Waterloo Road

			re-l	Dev	elop	Pre-Development	Ħ								Pos	ţ.	velc	Post-Development	Ħ				
20											0												
Vehicle Movement Performance	A Perform	SUCE										Vehicle Movement Performance	nt Perfor	nance									
Mov Turn Mov ID Class	Demand / Rows [Total HV] [Total weht] % veht]	Amnal S Hows [I total HV] S reful %	25g ¥	Aler Delay se	Level of Service	Awer Back Veh weh	Aver Back Of Queue Prop Que [Veh Dist] veh m	Oraș e e	Sign of the second	Aver No. of S Cycles	Speed km/h	Mov Turn Mov ID Class	Penrand Rows TotaltV vehil %	nd Amival KS Flows V][TotalHV] % velvit %	L 0/	N See	c Level of sy Service sc		Aver. Back Of Queue Prop. Que Veh Des veh m	ue Plop.	E 용권	Aver. No. of Cycles	Speed kmilti
South: Waterloo Road	P										To the same of	South: Waterloo Road	pex										
1 L2 All MCs	22 30	0 22 30	0.162	42	LOSA	0.0	0.0	000	0.04	0.00	9.99	1 L2 All MCs	R	20 33	20 0.168		42 LOSA	000	0.0	000	0.06	000	12
2 TI All MCs	287 3.0	0 287 30	0.162	0.0	LOSA	0.0	0.0	000	0.04	0.00	299	2 T1 All MCs	s 287 3.0	287	3.0 0.168		0.0 LOSA	0.0	0.0	000		0.00	55.4
Approach	309 3.0	0 309 3.0	0.162	0.3	M	0.0	0.0	000	0.04	00:00	299	Approach	320 2	29 320	29 0.168		0.4 NA	0.0	0.0	000	0.06	000	553
North: Waterloo Road	Q											North: Waterloo Road	pe										
8 T1 All MCs	238 3.0	0 238 3.0	0.129	0.0	LOSA	0.0	0.2	0.03	0.03	0.03	58.6	8 T1 All MCs	238	30 238 30	30 0.129		0.0 LOSA	0.0	0.2			0.03	585
9 R2 All MCs	6 30	0 6 30	0.129	3.5	LOSA	0.0	0.2	0.03	0.03	0.03	56.1	9 R2 All MCs	s 6 30	9	3.0 0.129		3.6 LOSA	0.0	0.2	0.03	0.03	0.03	999
Approach	244 3.0	0 244 3.0	0.129	0.1	M	0.0	0.2	0.03	0.03	0.03	58.5	Approach	244 30	0 244 30	30 0.129	29 0.1	1 NA		0.2			0.03	
West Banksia Road												West Banksia Road	9										
10 L2 AII MCs	100 30	0 100 30	0.081	9.9	LOSA	0.1	60	0.36	0.60	0.36	46.1	10 L2 All MCs	115	26 115	26 0.093		6.5 LOSA	1.0	1.1	0.37	0.61	0.37	46.1
Approach	100 30	0 100 30	0.081	9.9	LOSA	0.1	6.0	0.36	090	0.36	199	Approach	115 2	26 115	2.6 0.093		6.6 LOSA	0.1	17	0.37	0.61	0.37	46.1
All Vehicles	654 30	0 654 30	0.162	1.2	NA	0.1	60	20.0	0.12	0.07	51.2	All Vahides	679 2	29 679	2.9 0.168		1.4 NA	0.1	1.1	10.07	0.14	70.0	60.5
												_											

MOVEMENT SUMMARY - 8.00am - 9.00am - Base Year 2024 - Banksia Road / Noble Avenue

Vehicle M	Aovement	Performa	ğ			1		Sales of					B- 00	ent P	erforma	*2								N.	
ž Š	Charge Charge	Flowns Flowns [Total HV]]	Flower Flower Total HV			r. Levelor		5 -	Queue Prop. Ovo Dist.]	5 <i>8</i> 2	Cycles of		Mov Turn Mov ED Cass		Phones Phones ottal FPV] [Plows Flows			Service		Awer Back Of Quesue Prop. Que [Veh. Det]	are Prop	E of Se	Cycles of the	
South Not	South Noble August	veloth %	vehih	× ×	200	¥	(AB)		21			kmyh	South Noble Avenue	NAME OF TAXABLE PARTY.	M %	worth	Alc.	300		wall		ı			kmy
1 12	AB MCs	8 30	80	30 0232	4.1	1 LOSA	3A 0.6			6 0.42		6 43.8	1 L2 All	All MCs	8 30		0.257	26	LOSA		4.6	0.23	0.44	0.23	43
		289	289					5 4.0	0.16		0.16		2 TI All			289 3.0		4.0	903	9.0	4.6	0.23	0.44	0.23	41.5
3 R2	2 All MCs	14 3.0	7									6 38.9			28 1.4						4.6	0.23	0.44	0.23	38.
Approach		312 30	312	30 0232	2 4.0	O LOSA	SA 0.6		0.16		2 0.16		Approach	-	256 2.9	326 29	9 0.257			9.0	4.6	0.23	0.44	0,23	41.
East Banksia Road	bead Road												East Banksia R	Road											
4 12	All MCs	18		3.0 0.044	4 6.1								4 L2 All MCs								1.2	0.51	0.63	0.51	44
	All MCs		13 3			ASOL 6.	3A 0.1	9'0	5 0.49	6 0.59	9 0.49	9 44.3	S TI All		21 1.8	21 1.8		6.4		0.2	1.2	0.51	0.63	0.51	46.9
6 R2	Al MCs	6 30		30 0044	4 9.0								6 R2 AII								1.2	0.51	0.63	0.61	44
Approach		37 3.0											Approach								1.2	0.51	0.63	0.51	45.
North Noble	de Avenue													Avenue											
7 12	AI MCs	8	S	3.0 0.307	7 4.1							9 38.7		All MCs	67 23		3 0.336	4.5			6.4	0.26	0.44	0.26	38
			347	30 0307	3.9	P TOSA	SA 0.8	8 5.8	8 0.19	9 0.43	9 0 19	8.1.8			347 3.0	347 3.0		4.1	LOSA	6.0	6.4	0.26	0.44	0.26	41.5
9 R2	2 All MCs	13 30	13	0 0307										All MCs	13 3.0						6.4	0.26	0.44	0.26	43.
Approach		413 3.0	413	30 030		O LOSA							Approach	4			9 0.336				6.4	0.26	0.44	0.26	41.3
West: Banksia Road	Asia Road												West Banksia Road	Road											
10 12	All MCs	81	53										12	All MCs							1.0	0.49	0.58	0.49	42.9
11	AI MOs	8	22			6 LOSA							F	AIMOS							1.0	0.49	0.58	0.49	42.3
12 R2	2 All MCs	2 30	2	3.0 0.061	1 8.6		3A 0.1	9.0	3 0.46	6 0.57	7 0.46	6 422		All MCs	2 3.0	2 3.0		8.9	LOSA	0.1	1.0	0.49	0.58	0.49	42.6
Approach			25		1 5.8	8 LOSA							Approach								1.0	0.49	0.58	0.49	42
All Vehicles	0	815 3.0	815	30 0307	7 43	3 LOSA	8A 0.8	9	8 0.21	1 0.44	1 021	1 41.9	All Vehicles		886 2.8	886 28	3 0,336	4.7	LOSA	6.0	6.4	0.28	0.46	0.28	42.0

MOVEMENT SUMMARY - 3.15pm - 4.15pm - Base Year 2024 - Banksia Road / Waterloo Road

				2	, se	2	LIE-Developinein	_					86				P.	Post-Development) e	loie	me	ا ج				
Vehicle Mover	cie Movement Performance	mance											Vehicle	Movem	Vehicle Movement Performance	mance										
Mov Turn Mov D Chin	- 12	문항		Sam No.	Aver Le Dolay Sc sec	wel of A	Aver Level of Aver Back Of Que Dolay Sorvice [Vet. Dist] sec veh m	M Queue I Dist	Oue S		Aver No. of Sp. Cycles Sp. 2	Speed kmh	Mov ID	Tum Mov Class	Den Total	Denand Arrval Flows Flows Total IV Total IV vehith % vehith %	Amvai Flows al IN]	Self 3	Aver Dollay S	Savice	Aver Back Of Queue Prop Quo [Veh: Dst] veh: m	k Of Que	Out Out	문 있다.	Cycles of	Speed
South: Waterloo Road	Road												South. V	South: Waterloo Road	peop											
1 L2 AII	ALMCs 61	30 61	3.0	0.181		LOSA	0.0	0.0		0.10	00.0	905	-	L2 All MCs	8	2.6	69 26	0.186		LOSA	0.0	0.0	000	0.11	0.00	49.8
	All MCs 282	3.0 282	3.0	0.181	0.0	LOSA	0.0	0.0	000	0.10		52.6	7	T1 All MCs	282	3.0	282 30	0.186		LOSA	0.0	0.0	0.00	0.11	000	518
Approach	38	3.0 343	3.0	0.181	8.0	¥	0.0	0.0				523	Approach		352	53	362 29	0,186	0.8	NA	0.0	0.0	0.00	0.11	0.00	51
North: Waterloo Road	Road												North: W	North: Waterloo Road	peo											
S TI AB	88	3.0 298				LOSA	0.0	0.3				57.7		F1 All MCs	298	3.0		0.164	0.1	LOSA	0.0	0.3	0.04	90.0	0.04	57
9 R2 AI MCs	MCs 11 3.0	3.0 11	11 3.0 0			LOSA	0.0	0.3	0.04	90'0		54.0	0	R2 All MCs	Ξ	3.0 11	11 30	0.164	3.9	LOSA	0.0	0.3	0.04	90.0	0.04	633
Approach	308	3.0 308		0.164	0.2	¥	0.0	0.3		90'0		57.7	Approach	£	308	3.0	308 30	0.164	0.2	NA	0.0	0.3	0.04	0.05	0.04	57.6
West Banksia Road	load												West. B.	West. Banksia Road	pe											
10 L2 All	All MCs 136 3.0		135 3.0 0	0.109	9.9 L	LOSA	0.2	13	0.37	1970	0.37	46.1	10 12	2 All MCs	147	27	147 27	0.119	9.9	LOSA	0.2	1.4	0.37	1970	0.37	46.1
Approach	136	3.0 135	3.0	0.109	9.9 F	LOSA	0.2	13	0.37	1970	0.37	46.1	Approach	£	147	27 14	147 2.7	0.119	6.6	LOSA	0.2	1.4	0.37	0.61	0.37	46.1
All Vehides	786	3.0 786	786 3.0 0	0.181	15	¥	0.2	13	900	110	80'0	197	All Vehicles	8	108	29 807	29	0.186	1.7	N.	0.2	1.4	90'0	0.18	0.08	49.4

MOVEMENT SUMMARY - 3.15pm - 4.15pm - Base Year 2024 - Banksia Road / Noble Avenue

Vehicle M Mov Tum ID	Movement I	Performan Demand Flows Total HV 1	Amyal Flows Total HV	0 S	Palet	Level of Service	Aver. Back	Aver. Back Of Queue Prop. Que Veh. Dest	900	Slog El	Aver Cyde of	Aver. Spend	Web ID	ie Movem Turn Mov	and Personal	formanc smand Flows attV	A Amival Flowers	Para s	Aver. Delay	Level of Service	Aver. Back Of Queue Prop. [Veh. Det] vith m.	Of Queue Det]	Prop.	ᄧᇶ	Aver. Oydes	Spend
South: Nobi	Noble Averse												South	Noble Avenue	enne											
	ALIMOS	26 3.0			6,1		1.1	9.6	0.34	0.44	0.34	43.1	1 12		- 10	30	26 30	0.470	7.4	LOSA	15	10.8	0.40	0.46	0.40	428
3 82	AI MCs	22 30	22 30	0.444	7.4	LOSA	4 4	5 5	0.34	4 4	K 70	37.4	N M		All MCs 3	M 19	SE 18	0.470	8.0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15	10.8	0.40	0.46	0.40	36.9
bug		565 30			4.4		1.4	6.6	0.34	0.44	0.34	41.0	Appro		7757	29		0.470	4.7	V SOT	1.5	10.8	0.40	0.46	0.40	40.7
East Banks	Banksa Road												East	28	Road											
4	AI MCs				7.7		0.2	1.4	0.63	29.0	0.63	41.3	47					0.136	9.1	LOSA	0.3	2.1	99.0	69.0	0.65	42.8
5 TI		32 30	32 3.0	0.092	7.4	LOSA	0.2	1.4	0.63	19:0	0.63	43.4	5			37 26	37 26	0.136	7.7	LOS A	0.3	2.1	99.0	69'0	99.0	44.6
6 R2	AI MCs				10.5		0.2	1.4	0.63	190	0.63	410	9					0.136	1.1	LOSA	0.3	2.1	99'0	69.0	990	42.7
Approach					9.1		0.2	1.4	0.63	0.67	0.63	42.4	Appro	ach	gh.			0.136	8.8	V SOT	0.3	2.1	0.65	69.0	99'0	43.6
₩.	Noble Avenue												North	Nobie Av	ie Avenue											
7 12					4.5		1.7	11.9	0.36	0.44	0.36	37.2	7			25		0.518	4.9	LOSA	1.8	12.7	0.42	0.46	0.42	36.8
8 TI		514 3.0	514 3.0		4.3	LOSA	1.7	11.9	0.36	0.44	0.36	40.9	œ	T A	All MCs 514	30	514 3.0	0.518	4.5	LOSA	1.8	12.7	0.42	0.46	0.42	40.6
9 R2	All MCs				7.4		1.7	11.9	0.36	0.44	0.36	42.7	(Ot)			30		0.518	97	LOSA	1.8	12.7	0.42	0.46	0.42	42.5
Approach					4.5		1.7	E.9	0.36	0.44	0.36	40,8	Approach	ach	63	29		0.518	4.7	LOS A	1.8	12.7	0.42	0.46	0.42	40 5
West Bank	Banksia Road												West	Banksia F	sa Road											
10 12	All MCs	2 30		0.076	7.6		0.2	1.1	0.62	0.64	0.62	41.4	10		All MCs			980.0	7.8	LOSA	0.2	1.3	0.64	99.0	0.64	41.6
=		48 30	48 30	0.075	7.3	LOSA	0.2	1.1	0.62	0.64	0.62	40.2	H			55 27	12 23	0.096	7.7	LOSA	0.2	1.3	0.64	99'0	0.64	40.5
12 R2	All MCs	2 3.0			10.4		0.2	-	0.62	0.64	0.62	41.1	12	M	MCs			9800	10.6	LOSA	0.2	1.3	0.64	99'0	0.64	41.3
Approach		53 3.0		0.075	7.4		0.2	1.1	0.62	0.64	0.62	40.3	Approach	ach	LD.			960'0	7.8	LOSA	0.2	1.3	0.64	99.0	0.64	40.6
All Vehicles		1292 3.0	1292 3.0	0.489	4.8	LOSA	1.7	11.9	0.37	0.46	0.37	41.0	All Vehicles	hides	1356	53	136 29	0.518	5.1	LOSA	1.8	12.7	0.43	0.49	0.43	40.9

MOVEMENT SUMMARY - 8.00am - 9.00am - Future Year 2034 - Banksia Road / Waterloo Road

Vehicle Movement Performance	Performan	age .										Vehicle	ehicle Movement Performance	nt Perfor	mance									
Mov Turn Mov ID Class	Demand Rows [Total HV][Amival Flows (Total HV)	D. S.	Auer Delay	Service Service		Aver Back Of Queue Prop Que [Voh. Dist] veh m	e Pop	± 8 €	No. of Cydes	Speed	Mov T	Turn Mov Class	Demand Flows [Total HV]	<u>=</u> 4		Deg. Aver. Safn Delay v/c sec.	er. Level of ay Service ec.		Aver. Back Of Queue Prop. Que [Veh Diet] veh m	f Queue Pri Ored J		Stop No of Rath Cydes	And Spood
South: Waterloo Road	77											South: W.	South: Waterloo Road											
1 LZ All MCs	27 30	27 3.0	0.195	42	LOSA	0.0	0.0	0.00	0.04	00.0	56.8	-	L2 All MCs	93	20 39	20 0202		42 LOSA						
2 T1 All MCs	345 30	345 3.0			LOSA	0.0	0.0	000	000	000	299	2 1	T1 All MCs	345	3.0 345	3.0 0,202		0.0 LOSA		0.0	0 00	0.00	0.06 0	0.00 55.4
Approach	371 3.0	371 3.0	0.195	0.3	NA	0.0	0.0	000	0.04	000	9999	Approach	E	384 2	29 384				NA 0					
North: Waterloo Road	200											North, W.	North: Waterloo Road	pe										
8 T1 All MCs	285 30	285 30	0.156	0.1	LOSA	0.0	0.2	0.03	0.04	0.03	582	8 T	1 All MC	285	3.0 285	3.0 0.156								103 58.1
9 R2 All MCs	8 3.0	8 3.0	0.156	4.0	LOSA	0.0	0.2	0.03	0.04	0.03	55.1	6	R2 All MCs	80	3.0 8	3.0 0.156		4.1 LOSA		0.0	0.2 0	0.03 0.	0.04 0.0	0.03 54.9
Approach	293 3.0	293 3.0	0.156	0.5	ž	0.0	07	0.03	0.04	0.03	58.1	Approach	E	283	20 283	3.0 0.156		0.2	NA 0	0.0	0 70	0 600	0.04 0	0.03 58.1
West, Banksia Road												West Ba	West Banksia Road	70										
10 L2 All MCs	120 3.0	120 3.0	0.104	6.9	LOSA	0.2	12	0.41	0.64	0.41	45.9	10 12	2 All MCs	138	2.6 138	2.6 0.119		6.9 LOSA		0.2	1.4 0	0.41 0.	0.64 0	0.41 45.9
Approach	120 3.0	120 3.0	0.104	6.9	LOSA	0.7	12	0.41	0.64	0.41	45.9	Approach	æ	138 2	26 138	26 0.119		6.9 LOSA		0.2	14 0	0.41 0	0 790	0.41 45.9
All Vehicles	784 3.0	784 3.0	0.195	13	NA	07	12	0.07	0.13	0.07	51.0	All Vehicles	88	815 2	29 815	2.9 0.202		1.4	NA 0	0.2	1.4 0	0.08 0.	0.15 0.	0.08 50.3

MOVEMENT SUMMARY - 8.00am - 9.00am - Future Year 2034 - Banksia Road / Noble Avenue

	377	% ₹		63	413	o.	7		0	46.6	2	0		60	41.2	00	0		8	00	42.3	3	41.7
		of Speed																					
		No. of Cyrides			0.27						0.57				0.31		0.31		0.5	0.5	0.54	0.5	0.33
		트용원		0.44	0.44	0.44	0.44		99'0	0.65	0.65	0.65		0.44	0.44	0.44	0.44		0.61	0.61	0.61	0.61	0.47
		a Prop		0.27	0.27	0.27	0.27		0.57	0.57	0.57	0.57		0.31	0.31	0.31	0.31		0.54	0.54	0.54	0.54	0.33
_		Of Quesu Dest]		8.0	6.0	6.0	0.9		1.6	1.6	1.6	1.6			9.5				1.3	1.3	1.3	1.3	8.5
Lost-Developinent		Aver Back Of Queue [Veh. Dest] voh m		8.0	0.8	0.8	0.8		0.2	0.2	0.2	0.2		77	1.2	1.2	1.2		0.2	0.2	0.2	0.2	1.2
2		Level of Service		VSO.	LOSA	OSA.	OSA.		A SO.	LOSA	OSA	A SO.		A SO.	LOSA	OSA	OS A		LOSA	OSA	LOSA	OSA	LOSA
		Aver Li Delay S sec			-					7.0					4.2		44				9.4		4 8
21.0		Salm C		0.312	0.312	0.312	0.312		0.107	0.107	0.107	0.107		0.409	0.409	0.409	0.409		0.092	0.092	0.092	0.092	0.409
-		American Flower			3.0					1.8					3.0						3.0		2.8
		<u> </u>			3.0 347					1.8 25					3.0 417						3.0 3		28 1064
	Performance	Plows Flows (Total HV)			347 3					25 1					417 3		513 2				9		1064 2
	vement	Turn Mov Classs	Avenue	All MOs	All MOs	AI MCs		Posd a	All MCs	All MOs	AI MOs		Noble Avenue	All MCs	AI MOs	All MOs		Banksia Road	All MCs	All MCs	All MCs		
	icie Mo		South: Noble Avenue			- 1	roach	r Banksia Road				roach	h. Noble			_	roach	t Banks		F		Approach	Vehides
	, S	Ž:	Sou	-	7	m	App	East	4	10	œ	App	Non	1	0	m	App	West	10	11	12	App	1
		Aver		436	41.8	38.7	41.0		42.0	44.0	41.7	428		38.3	41.6	43.2	41.4		423	413	41.9	41.9	41.7
	92	Aner Ordes		0.19	0.19	0.19	0.19		0.54	0.54	0.54	0.54		0.23	0.23	0.23	0.23		0.51	0.51	0.51	0.51	0.25
		E 88 E		0.42	0.42	0.42	0.42		0.63	0.63	0.63	0.63		0.43	0.43	0.43	0.43		69.0	0.59	0.59	0.59	0.45
	18	ope Ope		0.19	0.19	0.19	0.19		0.54	0.54	0.54	0.54		0.23	0.23	0.23	0.23		150	0.51	0.51	0.51	970
120	02	Dist.]		5.2	5.2	6.2	6.2		8.0	0.8	0.8	0.8		9.7	7.6	7.6	9.2		1.1	Ξ	Ţ	17	7.6
rie-Developinent		Aver Back Of Veh.		0.7	0.7	0.7	2.0		0.1	1.0	1.0	170		1.1	1.1	1.1	1.1		0.2	0.2	0.2	0.2	1
2		Level of Service		LOSA	OSA	LOSA	LOSA		OSA	LOSA	LOSA	OSA		LOSA	LOSA	LOSA	LOSA		OSA	LOSA	LOSA	LOSA	LOSA
>		Aver Le Delay St			3.9 L						9.5				4.0 L		41			0.0 L		6.3 L	4.4
		Safin D		0.280	0.280	0.280	0.280		990.0	9900	9900	990'0		0.372	0.372	0.372	0.372		2,70.0	7200	720.0	7,000	0.372
		1 S T Y		3.0	3.0	3.0	3.0		30	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0
	nance	불			3.0 347		3.0 374				3.0 8	3.0 44		3.0 63	3.0 417	3.0 15	3.0 495			3.0 27		3.0 64	3.0 978
	rement Performance	Demand Flows [Total HV] webth %		10	347	16 3			21 3.0		80	44		63	417	15					3 30	23	978 3
	wement	Turn Mov Chass	B Avenue	All MCs	All MCs	All MCs		in Road	All MCs	All MCs	All MCs		e Avenue	All MCs	All MCs	All MCs		sia Road	All MCs	All MCs	All MCs		
	hicle Mc	A Tum	South: Noble Avenue			22	proach	East Banksia Road	4 12		R2	pead	North: Noble Avenue	77	F	RZ	Approach	West Banksia Road	17	I	R2	Approach	All Vehicles
	3	∄ ⊕	So	**	7	es	App	E	4	LD.	9	App	20	1	10	60	App	Ne	10	E	12	App	A

MOVEMENT SUMMARY - 3.15pm - 4.15pm - Future Year 2034 - Banksia Road / Waterloo Road

Description				pment	evelopment	re-Development	Pre-Development
Performance Animal Dog Aver. Lord of Aver. Bartk Of Quous Prop. Eff. Avoid Sign Delay Service (Veh. Dela) Dog Strop No of Sign Delay Service (Veh. Dela) Dog Strop No of Sign Delay Service (Veh. Dela) Dog Ogg Dog Dog Dog Dog Dog Dog Dog Dog Dog D							
Description Arrival Dog Aver. Lovel of Aver. Back Of Quoue Prop. Eff. Aver. Bring No. of Sing No		Vehicle	Vel	Vel	Vel	Vel	Vel
83 26 83 26 0223 42 LOSA 0.0 0.0 0.0 0.11 0.00 339 3.0 339 3.0 0223 0.2 LOSA 0.0 0.0 0.0 0.11 0.00 422 2.9 422 2.9 0223 0.8 NA 0.0 0.0 0.0 0.0 0.11 0.00 357 3.0 357 3.0 0.198 0.1 LOSA 0.1 0.4 0.0 0.0 0.0 0.1 0.0 0.0 357 3.0 3.7 3.0 0.198 44 LOSA 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1		Aver. Mov Speed IID km/h	Eff. Aver. Aver. Mov Stop. No of Speed ID Rate Cyclos. knwh.	Eff. Aver. Aver. Mov Stop. No of Speed ID Rate Cyclos. knwh.	Eff. Aver. Aver. Mov Stop. No of Speed ID Rate Cyclos. knwh.	ack Of Queeue Prop. Ell. Aver. Aver. Moy Que. Stop No of Speed IID Dist. Ratio Cycles m.	Eff. Aver. Aver. Mov Stop. No of Speed ID Rate Cyclos. knwh.
83 26 83 26 0223 42 LOSA 0.0 0.0 0.0 0.11 0.00 339 3.0 339 3.0 0.223 0.0 LOSA 0.0 0.0 0.0 0.11 0.00 422 2.9 422 2.9 0.223 0.8 NA 0.0 0.0 0.0 0.0 0.11 0.00 422 2.9 422 2.9 0.223 0.8 NA 0.0 0.0 0.0 0.0 0.11 0.00 357 3.0 357 3.0 0.198 0.1 LOSA 0.1 0.4 0.05 0.05 0.05 13 3.0 13 3.0 0.198 4.4 LOSA 0.1 0.4 0.05 0.05 0.05 370 3.0 370 3.0 0.198 0.3 NA 0.1 0.4 0.05 0.05 0.05 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 29 0.023 1.7 NA 0.3 1.8 0.09 0.19 0.09		South: W	South: W	South: W	South: W	South: W	South: W
339 3.0 339 3.0 0.223 0.0 LOSA 0.0 0.0 0.0 0.11 0.00 422 2.9 422 2.9 0.223 0.8 NA 0.0 0.0 0.0 0.0 0.11 0.00 0.11 3.3 0.13 3.0 3.5 3.0 0.196 0.1 LOSA 0.1 0.4 0.05 0.05 0.05 13 3.0 13 3.0 0.196 4.4 LOSA 0.1 0.4 0.05 0.05 0.05 3.0 3.7 3.0 3.7 3.0 0.196 0.3 NA 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		1 909	-	0.0 0.0 0.00 0.10 0.00 50.6	0.0 0.00 0.10 0.00 50.6	LOS A 0.0 0.0 0.00 0.00 50.6 1	4.2 LOSA 0.0 0.0 0.00 0.10 0.00 50.6 1
422 29 422 29 0223 0.8 NA 0.0 0.0 0.0 0.01 0.00 0.11 0.00 0.13 0.13		52.5 2	0.00 52.5 2	0.0 0.0 0.00 0.10 0.00 52.5 2	0.0 0.00 0.10 0.00 52.5 2	. 0.0 LOSA 0.0 0.0 0.00 0.10 0.00 52.5 2	. 0.0 LOSA 0.0 0.0 0.00 0.10 0.00 52.5 2
Fertion Road I All MCs 357 3.0 357 3.0 0.196 0.1 LOSA 0.1 0.4 0.05 0.05 0.05 0.05 All MCs 13 3.0 13 3.0 0.196 4.4 LOSA 0.1 0.4 0.05 0.05 0.05 0.05 370 3.0 370 3.0 0.196 0.3 NA 0.1 0.4 0.05 0.05 0.05 0.05 Kasia Road I All MCs 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 0.42 0.43 0.43 0.43 0.42 0.54 0.42 0.44 0.42 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45		3.00 52.3 Approach		0.0 0.0 0.00 0.10 0.00 52.3	0.0 0.00 0.10 0.00 52.3	NA 0.0 0.0 0.00 0.10 0.00 52.3	0.8 NA 0.0 0.0 0.00 0.10 0.00 62.3
A MINOS 357 3.0 377 3.0 0198 0.1 LOSA 0.1 0.4 0.06 0.06 0.06 0.05 2 AIMOS 13 3.0 13 3.0 0198 4.4 LOSA 0.1 0.4 0.05 0.05 0.05 0.05 370 3.0 370 3.0 0.198 0.3 NA 0.1 0.4 0.05 0.05 0.05 0.05 370 3.0 1.15 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 0.42 0.59 0.59 0.59 0.59 0.22 1.7 NA 0.3 1.8 0.09 0.19 0.09		North: V	North: V	North: V	North: V	North: W	North: W
A M MCs 13 3 0 13 3 0 0198 44 LOSA 0.1 04 0.05 0.05 0.05 0.05 8 8 8 8 8 8 9 0 3 N 2 0 198 0.3 N A 0.1 0.4 0.05 0.05 0.05 0.05 0.05 0.05 0.05	_		0.05 0.04 57.3	0.1 0.4 0.04 0.05 0.04 57.3	0.4 0.04 0.05 0.04 57.3	LOS A 0.1 0.4 0.04 0.05 0.04 57.3	367 3.0 0.198 0.1 LOSA 0.1 0.4 0.04 0.06 0.04 57.3
370 3.0 370 3.0 0.198 0.3 NA 0.1 0.4 0.05 0.05 0.05 0.05 8 Wais Road 1 17 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 0.64 0.42 0.69 0.99 0.90 2.9 0.223 1.7 NA 0.3 1.8 0.09 0.19 0.09	-	63.0	6	0.1 0.4 0.04 0.05 0.04 53.0 9	0.4 0.04 0.05 0.04 53.0 9	4.3 LOSA 0.1 0.4 0.04 0.05 0.04 53.0 9	4.3 LOSA 0.1 0.4 0.04 0.05 0.04 53.0 9
All MCs 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 969 2.9 969 2.9 0.223 1.7 NA 0.3 1.8 0.09 0.19 0.09	-	57.3	0.04 57.3	0.1 0.4 0.04 0.05 0.04 57.3	0.4 0.04 0.05 0.04 57.3	NA 0.1 0.4 0.04 0.05 0.04 57.3	0.198 02 NA 0.1 0.4 0.04 0.05 0.04 57.3
All MCs 177 27 177 27 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 1.7 2.7 177 2.7 177 2.7 177 2.7 177 2.7 177 2.7 177 2.7 177 2.7 18.0 0.42 0.54 0.54 0.42 0.64 0.42 0.69 0.59 0.69 0.59 0.223 1.7 NA 0.3 1.8 0.09 0.19 0.09	775	West B	West B	West B	West B	West B	West B
177 27 177 2.7 0.152 6.9 LOSA 0.3 1.8 0.42 0.64 0.42 0.69 2.9 969 2.9 0.223 1.7 NA 0.3 1.8 0.09 0.19 0.09	_	45.8 10	10	02 1.6 0.41 0.54 0.41 45.8 10	1.6 0.41 0.64 0.41 45.8 10	LOSA 0.2 1.6 0.41 0.64 0.41 45.8 10	6.9 LOSA 0.2 1.6 0.41 0.64 0.41 45.8 10
969 29 969 29 0223 1.7 NA 0.3 1.8 0.09 0.19 0.09	- 2	141 45.8 Approach		0.2 1.6 0.41 0.64 0.41 45.8	1.6 0.41 0.64 0.41 45.8	LOSA 0.2 1.6 0.41 0.64 0.41 45.8	6.9 LOSA 0.2 1.6 0.41 0.64 0.41 45.8
	.0	3.09 49.5 All Vehicles		0.2 1.6 0.09 0.18 0.09 49.5	1.6 0.09 0.18 0.09 49.5	NA 0.2 1.6 0.09 0.18 0.09 49.5	1.6 NA 0.2 1.6 0.09 0.18 0.09 49.5

MOVEMENT SUMMARY - 3.15pm - 4.15pm - Future Year 2034 - Banksia Road / Noble Avenue

				2	2		rie-pevelopilient	-										116	200	2	Lost-Developinent	_				
													×													
Vehicle	Мочетеп	t Performance											Vehici	cie Movem		nt Performance				3	STATE OF THE PERSONS		1/8		(8	1
ž Š	Class Class	Total IV	Form Flores	8 5 1	NA I	y Service		Aver Back Of Que	of the last of the	± 8 ₹	No of the Cycles		MQI ID	Tum Mov	=	Demand Plows Gall IV To		5 S	Petro s	Served of	Aver, Elack Of Care of Trop. [Vah. Det.] Care	De de	o de la composition della comp	E Se E	No of Charles	
South: No	South: Noble Avenue		-										South	Noble Avenue	ans											
-	LZ AI MCs	32	32 30	0 0543	3 48	8 LOSA				3 0.46	6 0.43	3 427				3.0		0.577		LOSA	22	15.4	0.51	0.48	0.51	42.4
		909	909										10000	TI AIIMCS		3.0		1150		LOSA	22	15.4	0.51	0.48	0.61	40
Approach	R2 All MCs	666 30	666 30	0 0543	3 47	7 LOSA	0 0 E	13.9	9 0.43	3 0.46	6 0.43	3 40.6	Approach		682	58	62 28	0.577	5.1	LOSA	77	164	0.51	0.48	0.61	40.1
ast Ban	East Banksia Road												East B	Banksia Road	20											
4 12	2 AIMCs	24 30	24 30		7 88	8 LOSA						1 40.5	4			1.8		0.188		LOSA	0.4	3.2	0.74	0.74	0.74	41.9
	TI AIMCS	38		0 0.127	7 8.6		A 0.3		17.0	1 072	2 0.71			T1 All MCs	Cs 44	2.6	44 2.6	0.188	8.9	LOSA	0.4	3.2	0.74	0.74	0.74	43.9
S. R.	R2 All MCs		15		7 11.6								8 R2			15		0.188		LOSA	0.4	32	0.74	0.74	0.74	418
Approach	F	77 3.0	77 3.0	0 0.127		3 LOSA		3 21	1 0.71	1 0.72		1 41.6	1110000	f)	114	2.0		0.188		LOSA	0.4	3.2	0.74	0.74	0.74	42.8
Vorter No	North: Noble Avenue												North	Noble Avenue	90											
7 12	2 AIMOs	87 3.0	87 3.0	0 0598	8 48	8 LOSA				6 0.46	6 0.46	8 38.4	7 12	L2 All MCs		2.5		0.636		LOSA	2.6	18.7	99'0	0.49	0.66	35.8
			616	0 0598			A 24	17.1		6 0.46	6 0.48				Cs 616	3.0	616 3.0	0.636	4.9	LOSA	2.6	187	0.55	65'0	0.55	40.0
9 K	R2 All MCs	40 30	40 30		8 7.6	8 LOSA						6 42.3		R2 All MCs		3.0		0.636	- 1	LOSA	2.6	18.7	0.55	0.49	0.65	42 (
Approach		744 3.0	744 3.0	0 0,598	6 4.8	B LOSA			1 0.46	6 0,46	6 0.46	6 40.2		t)	760	2.9	50 29	0.636	5.1	LOSA	2.6	18.7	0.55	0.49	0.65	39.66
Vest Bu	West Banksia Road												West E	Banksia Road	pen											
10 [2	2 All MCs	m	~		2 86	6 LOSA		7					200			3.0	3 30	0.119	0.6	LOSA	0.3	1.9	0.72	0.71	0.72	40.7
		58 3.0	58 30	0 0.102			A 02	3.1.6	69 0 69	69 0 68	9 0 69	9 39.1	= 1		Cs 66	2.7	66 27	0.119		LOSA	0.3	61	0.72	0.71	0.72	39.2
12 R	R2 AIMCs	3 30	65		2 11.4			-					200	R2 All MC		3.0	3 3.0	0.119	11.8	LOSA	0.3	1.9	0.72	0.71	0.72	40.4
oproach		63 3.0	8					-					coet so	to.	7	27	17 11	0.119		LOSA	0.3	6	0.72	0.71	0.72	38
All Vehicles	10	1550 3.0	1550 3.0 1550 3.0	0 0.598	5.1	1 LOSA	A 24	17.1	1 0.47	7 0.48	8 0.47	7 40.4	All Vehicles	cles	1627	29 1627	62 12	9690	9'9	LOSA	5.6	18.7	950	15.0	990	40.3